Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.1 MB)

Title: Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest

Author: Johnson, Morris C.; Kennedy, Maureen C; Peterson, David L.

Date: 2011

Source: Canadian Journal of Forest Research. 41(6): 1018-1030

Publication Series: Scientific Journal (JRNL)

Description: We used the Fire and Fuels Extension to the Forest Vegetation Simulator (FFE-FVS) to simulate fuel treatment effects on stands in low- to midelevation dry forests (e.g., ponderosa pine (Pinus ponderosa Dougl. ex. P. & C. Laws.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) of the western United States. We evaluated treatment effects on predicted post-treatment fire behavior (fire type) and fire hazard (torching index). FFE-FVS predicts that thinning and surface fuel treatments reduced crown fire behavior relative to no treatment; a large proportion of stands were predicted to transition from active crown fire pre-treatment to surface fire post-treatment. Intense thinning treatments were predicted to be more effective than light thinning treatments. Prescribed fire was predicted to be the most effective surface fuel treatment, whereas FFE-FVS predicted no difference between no surface fuel treatment and extraction of fuels. This inability to discriminate the effects of certain fuel treatments illuminates the consequence of a documented limitation in how FFE-FVS incorporates fuel models and we suggest improvements. The concurrence of results from modeling and empirical studies provides quantitative support for "fire-safe" principles of forest fuel reduction (sensu Agee and Skinner 2005. For. Ecol. Manag. 211: 83–96).

Keywords: fuel treatment, fire hazard, thinning treatments, fire behavior, FFE-FVS, simulation models

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Johnson, Morris C.; Kennedy, Maureen C; Peterson, David L. 2011. Simulating fuel treatment effects in dry forests of the western United States: testing the principles of a fire-safe forest. Canadian Journal of Forest Research. 41(6): 1018-1030.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.