Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.1 MB)

Title: Important parameters for smoke plume rise simulation with Daysmoke

Author: Liu, L.; Achtemeier, G.L.; Goodrick, S.L.; Jackson, W.

Date: 2010

Source: Atmospheric Pollution Research 1:250-259

Publication Series: Journal/Magazine Article (JRNL)

Description: Daysmoke is a local smoke transport model and has been used to provide smoke plume rise information. It includes a large number of parameters describing the dynamic and stochastic processes of particle upward movement, fallout, fluctuation, and burn emissions. This study identifies the important parameters for Daysmoke simulations of plume rise and seeks to understand their impacts on regional air quality simulations with the Community Multiscale Air Quality (CMAQ) model. The Fourier Amplitude Sensitivity Test (FAST) was first applied to Daysmoke simulations of prescribed burning in the southeastern U.S. It is shown that, for the specified value ranges of 15 parameters, entrainment coefficient and number of updraft cores are the most important for determining smoke plume rise. Initial plume temperature anomaly, diameter of flaming area, and thermal stability also contribute to a certain extent. CMAQ simulations were then conducted for a couple of different updraft core numbers. The simulated ground PM2.5 concentration is much closer to the measurements with multiple updraft cores than single core. The results from this study therefore suggest that simulations of Daysmoke and CMAQ could be improved by a better understanding of plume structure to aid in specifying the number of smoke updraft cores.

Keywords: Smoke, Plume rise, Daysmoke, Sensitivity analysis, Air quality

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Liu, L.; Achtemeier, G.L.; Goodrick, S.L.; Jackson, W. 2010. Important parameters for smoke plume rise simulation with Daysmoke. Atmospheric Pollution Research 1:250-259.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.