Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

Title: Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change

Author: Iverson, Louis R.; Prasad, Anantha M.; Matthews, Stephen N.; Peters, Matthew P.

Date: 2011

Source: Ecosystems. 14: 1005-1020.

Publication Series: Journal/Magazine Article (JRNL)

Description: We present an approach to modeling potential climate-driven changes in habitat for tree and bird species in the eastern United States. First, we took an empirical-statistical modeling approach, using randomForest, with species abundance data from national inventories combined with soil, climate, and landscape variables, to build abundance-based habitat models for 134 tree and 147 bird species. We produced lists of species for which suitable habitat tends to increase, decrease, or stay the same for any region. Independent assessments of trends of large trees versus seedlings across the eastern U.S. show that 37 of 40 species in common under both studies are currently trending as modeled. We developed a framework, ModFacs, in which we used the literature to assign default modification factor scores for species characteristics that cannot be readily assessed in such models, including 12 disturbance factors (for example, drought, fire, insect pests), nine biological factors (for example, dispersal, shade tolerance), and assessment scores of novel climates, long-distance extrapolations, and output variability by climate model and emission scenario. We also used a spatially explicit cellular model, SHIFT, to calculate colonization potentials for some species, based on their abundance, historic dispersal distances, and the fragmented nature of the landscape. By combining results from the three efforts, we can create projections of potential climate change impacts over the next 100 years or so. Here we emphasize some of the lessons we have learned over 16 years in hopes that they may help guide future experiments, modeling efforts, and management.

Keywords: climate change, eastern United States, randomForest, statistical modeling, migration, trees, birds, DISTRIB, SHIFT, ModFacs

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Iverson, Louis R.; Prasad, Anantha M.; Matthews, Stephen N.; Peters, Matthew P. 2011. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems. 14: 1005-1020.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.