Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(7.3 MB)

Title: Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest

Author: Bales, Roger C.; Hopmans, Jan W.; O’Geen, Anthony T.; Meadows, Matthew; Hartsough, Peter C.; Kirchner, Peter; Hunsaker, Carolyn T.; Beaudette, Dylan.

Date: 2011

Source: Vadose Zone J. 10: 786-799

Publication Series: Scientific Journal (JRNL)

Description: Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture measurements were deployed in a rain–snow transition catchment in the mixed-conifer forest in the Southern Sierra Nevada. At each elevation sensors were placed in the open, under the canopy, and at the drip edge on both north- and south-facing slopes. Snow sensors were placed at 27 locations, with soil moisture and temperature sensors placed at depths of 10, 30, 60, and 90 cm beneath the snow sensor. Soils are weakly developed (Inceptisols and Entisols) and formed from decomposed granite with properties that change with elevation. The soil– bedrock interface is hard in upper reaches of the basin (>2000 m) where glaciers have scoured the parent material approximately 18,000 yr ago. Below an elevation of 2000 m soils have a paralithic contact (weathered saprolite) that can extend beyond a depth of 1.5 m, facilitating pathways for deep percolation. Soils are wet and not frozen in winter, and dry out in the weeks following spring snowmelt and rain. Based on data from two snowmelt seasons, it was found that soils dry out following snowmelt at relatively uniform rates; however, the timing of drying at a given site may be offset by up to 4 wk because of heterogeneity in snowmelt at different elevations and aspects. Spring and summer rainfall mainly affected sites in the open, with drying after a rain event being faster than following snowmelt. Water loss rates from soil of 0.5 to 1.0 cm d−1 during the winter and snowmelt season reflect a combination of evapotranspiration and deep drainage, as stream baseflow remains relatively low. About one-third of annual evapotranspiration comes from water storage below the 1-m depth, that is, below mapped soil. We speculate that much of the deep drainage is stored locally in the deeper regolith during periods of high precipitation, being available for tree transpiration during summer and fall months when shallow soil water storage is limiting. Total

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bales, Roger C.; Hopmans, Jan W.; O’Geen, Anthony T.; Meadows, Matthew; Hartsough, Peter C.; Kirchner, Peter; Hunsaker, Carolyn T.; Beaudette, Dylan. 2011. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest. Vadose Zone J. 10: 786-799 doi:10.2136/vzj2011.0001

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.