Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(92 KB)

Title: A wildland fire emission inventory for the western United States - uncertainty across spatial and temporal scales

Author: Urbanski, Shawn; Hao, WeiMin

Date: 2010

Source: American Geophysical Union. Fall Meeting: Abstract #A21B-0069.

Publication Series: Miscellaneous Publication

Description: Emissions of trace gases and aerosols by biomass burning (BB) have a significant influence on the chemical composition of the atmosphere, air quality, and climate. BB emissions depend on a range of variables including burned area, fuels, meteorology, combustion completeness, and emission factors (EF). Emission algorithms provide BB emission inventories (EI) which serve as critical input for Chemical Transport Models (CTM) employed in atmospheric sciences in a wide array of studies. Many different BB EI are commonly used and agreement among these EI is often poor. In general, the sensitivity of the emission estimates to the algorithm components is not well characterized and the performance of most algorithms have not been examined across the scales they are used. Understanding the sensitivity of EI to algorithm component uncertainties is crucial for assessing their impact on CTM simulations. We examine the spatial and temporal sensitivity of BB emission estimates of CO to uncertainties in mapped fuel loading, fuel consumption, burned area and emission factors. The study focuses on wildland fire in the western United States(2003 - 2008). Two fuel loading maps and 2 fuel consumption models provided 4 fuel load consumption emission scenarios with identical burned area and meteorology. The burned area used in the study was mapped using a MODIS burn scar algorithm.

Keywords: biosphere/atmosphere interactions, pollution, troposphere composition and chemistry

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Urbanski, S. P.; Hao, W. 2010. A wildland fire emission inventory for the western United States - uncertainty across spatial and temporal scales. American Geophysical Union. Fall Meeting: Abstract #A21B-0069.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.