Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(696 KB)

Title: Do limited cold tolerance and shallow depth of roots contribute to yellow-cedar decline?

Author: Schaberg, Paul G.; D'Amore, David V.; Hennon, Paul E.; Halman, Joshua M.; Hawley, Gary J.

Date: 2011

Source: Forest Ecology and Management. 262: 2142-2150.

Publication Series: Journal/Magazine Article (JRNL)

Description: It has been proposed that yellow-cedar (Callitropsis nootkatensis) decline is initiated by the freezing injury of roots when soils freeze during times of limited snowpack. To explain the unique susceptibility of yellow-cedar in contrast to co-occurring species, yellow-cedar roots would need to be less cold tolerant and/or more concentrated in upper soil horizons that are prone to freezing. We measured the root cold tolerance and used concentrations of foliar cations as an assay of rooting depth for five species in one forest in Ketchikan, Alaska. Species evaluated were yellow-cedar, western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), mountain hemlock (Tsuga mertensiana), and Sitka spruce (Picea sitchensis). Roots were collected in November 2007 and January, March and May 2008; foliage was collected in January 2008. Soil samples from surface and subsurface horizons were analyzed for available calcium (Ca) and aluminum (Al) to compare with foliar cation concentrations. Across all dates the sequence in hardiness from the least to most cold tolerant species was (1) yellow-cedar, (2) western redcedar, (3) western and mountain hemlock, and (4) Sitka spruce. Yellow-cedar and redcedar roots were less cold tolerant than roots of other species on all sample dates, and yellow-cedar roots were less cold tolerant than redcedar roots in January. Yellow-cedar roots were fully dehardened in March, whereas the roots of other species continued to deharden into May. Yellow-cedar roots exhibited the highest electrolyte leakage throughout the year, a pattern that suggests the species was continuously poised for physiological activity given suitable environmental conditions. Yellow-cedar and redcedar had higher foliar Ca and lower Al concentrations, and greater Ca:Al ratios than the other species. Yellow-cedar had higher foliar Ca and Ca:Al than redcedar. Soil measurements confirmed that the upper horizon contained more extractable Ca, less Al and higher Ca:Al than the lower horizon. Considering the distribution of Ca and Al in soils, we propose that concentrations of Ca and Al in yellow-cedar and redcedar foliage reflect a greater proportional rooting of these species in upper soil horizons compared to other species tested. Greater Ca and Ca:Al in the foliage of yellow-cedar suggests shallower rooting compared to redcedar, but broad similarities in foliar cation profiles for these species also highlight some overlap in rooting niche. Our data indicate that both limited root cold tolerance and shallow rooting likely contribute to the unique sensitivity of yellow-cedar to freezing injury and decline relative to sympatric conifers.

Keywords: Yellow-cedar, Western redcedar, Western and mountain hemlock, Sitka spruce, Root freezing injury

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Schaberg, Paul G.; D'Amore, David V.; Hennon, Paul E.; Halman, Joshua M.; Hawley, Gary J. 2011. Do limited cold tolerance and shallow depth of roots contribute to yellow-cedar decline? Forest Ecology and Management. 262: 2142-2150.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.