Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(599 KB)

Title: Litter decay rates are determined by lignin chemistry

Author: Talbot, Jennifer M.; Yelle, Daniel J.; Nowick, James; Treseder, Kathleen K.

Date: 2011

Source: Biogeochemistry. (2011): [17] p.

Publication Series: Journal/Magazine Article (JRNL)

Description: Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and ρ-hydroxyphenyl- type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and ρ-hydroxyphenyl- type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-ρ-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.

Keywords: Lignin, decomposition, leaves, biodegradation, plant litter, forest litter, chemical composition, cellulose, hemicellulose, lignocellulose, nitrogen, Arabidopsis thaliana, aldehydes, crosslinking, polysaccharides, nuclear magnetic resonance, syringyl, guaiacyl, hydroxyphenyl

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Talbot, Jennifer M.; Yelle, Daniel J.; Nowick, James; Treseder, Kathleen K. 2011. Litter decay rates are determined by lignin chemistry. Biogeochemistry. (2011): [17] p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.