Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.0 MB)

Title: Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate

Author: Chundawat, Shishir P.S.; Bellesia, Giovanni; Uppugundla, Nirmal; da Costa Sousa, Leonardo; Gao, Dahai; Cheh, Albert M.; Agarwal, Umesh P.; Bianchetti, Christopher M.; Phillips, George N.; Langan, Paul; Balan, Venkatesh; Gnanakaran, S.; Dale, Bruce E.

Date: 2011

Source: Journal of the American Chemical Society. Vol. 133, no. 29 (July 27, 2011): p. 11163-11174.

Publication Series: Scientific Journal (JRNL)

Description: Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iâ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by 50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60-70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production.

Keywords: Chemical reactions, biomass, utilization, cellulose, chemistry, crystallization, chemical composition, biomass energy, biotechnology, enzymes, industrial applications, lignocellulose, biodegradation, cellulase, hydrogen, ammonia, glucans, feedstock, pretreatment, hydrolysis, Trichoderma reesei, fungi, decay fungi, depolymerization, polymers, polymerization, crystalline cellulose, crystallinity, biorefining, bioconversion, biofuels, saccharification, kinetics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Chundawat, Shishir P.S.; Bellesia, Giovanni; Uppugundla, Nirmal; da Costa Sousa, Leonardo; Gao, Dahai; Cheh, Albert M.; Agarwal, Umesh P.; Bianchetti, Christopher M.; Phillips, George N.; Langan, Paul; Balan, Venkatesh; Gnanakaran, S.; Dale, Bruce E. 2011. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. Journal of the American Chemical Society. Vol. 133, no. 29 (July 27, 2011): p. 11163-11174.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.