Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(692 KB)

Title: Spatially explicit shallow landslide susceptibility mapping over large areas

Author: Bellugi, Dino; Dietrich, William E.; Stock, Jonathan; McKean, Jim; Kazian, Brian; Hargrove, Paul

Date: 2011

Source: In: Genevois, R.; Hamilton, D. L.; Prestininzi, A., eds. Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment; Padua, Italy; June 7-11, 2011. Rome, Italy: Casa Editrice Universita La Sapienza, Italian Journal of Engineering Geology and Environment-Book. p. 759-768.

Publication Series: Not categorized

Description: Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so it has generated downscaled precipitation maps for the storm. To predict the corresponding pattern of shallow landslide susceptibility across the state, we have used the model Shalstab (a coupled steady state runoff and infinite slope stability model) which susceptibility spatially explicit estimates of relative potential instability. Such slope stability models that include the effects of subsurface runoff on potentially destabilizing pore pressure evolution require water routing and hence the definition of upslope drainage area to each potential cell. To calculate drainage area efficiently over a large area we developed a parallel framework to scale-up Shalstab and specifically introduce a new efficient parallel drainage area algorithm which produces seamless results. The single seamless shallow landslide susceptibility map for all of California was accomplished in a short run time, and indicates that much larger areas can be efficiently modelled. As landslide maps generally over predict the extent of instability for any given storm. Local empirical data on the fraction of predicted unstable cells that failed for observed rainfall intensity can be used to specify the likely extent of hazard for a given storm. This suggests that campaigns to collect local precipitation data and detailed shallow landslide location maps after major storms could be used to calibrate models and improve their use in hazard assessment for individual storms.

Keywords: shallow landslides, drainage area, slope stability, Shalstab, parallel computing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bellugi, Dino; Dietrich, William E.; Stock, Jonathan; McKean, Jim; Kazian, Brian; Hargrove, Paul. 2011. Spatially explicit shallow landslide susceptibility mapping over large areas. In: Genevois, R.; Hamilton, D. L.; Prestininzi, A., eds. Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment; Padua, Italy; June 7-11, 2011. Rome, Italy: Casa Editrice Universita La Sapienza, Italian Journal of Engineering Geology and Environment-Book. p. 759-768.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.