Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(713 KB)

Title: Nitrogen alters carbon dynamics during early succession in boreal forest

Author: Allison, Steven D.; Gartner, Tracy B.; Mack, Michelle C.; McGuire, Krista; Treseder, Kathleen.

Date: 2010

Source: Soil Biology & Biochemistry. 42: 1157-1164

Publication Series: Scientific Journal (JRNL)

Description: Boreal forests are an important source of wood products, and fertilizers could be used to improve forest yields, especially in nutrient poor regions of the boreal zone. With climate change, fire frequencies may increase, resulting in a larger fraction of the boreal landscape present in early successional stages. Since most fertilization studies have focused on mature boreal forests, the response of burned boreal ecosystems to increased nutrient availability is unclear. Therefore, we used a nitrogen (N) fertilization experiment to test how carbon (C) cycling in a recently-burned boreal ecosystem would respond to increased N availability. We hypothesized that fertilization would increase rates of decomposition, soil respiration, and the activity of extracellular enzymes involved in C cycling, thereby reducing soil C stocks. In line with our hypothesis, litter mass loss increased significantly and activities of cellulose- and chitin-degrading enzymes increased by 45-61% with N addition. We also observed a significant decline in C concentrations in the organic soil horizon from 19.5 ± 0.7% to 13.5 ± 0.6%, and there was a trend toward lower total soil C stocks in the fertilized plots. Contrary to our hypothesis, mean soil respiration over three growing seasons declined by 31% from 78.3 ± 6.5 mg CO2-C m-2 h-1 to 54.4 ± 4.1 mg CO2-C m-2 h-1.These changes occurred despite a 2.5-fold increase in aboveground net primary productivity with N, and were accompanied by significant shifts in the structure of the fungal community, which was dominated by Ascomycota. Our results show that the C cycle in early successional boreal ecosystems is highly responsive to N addition. Fertilization results in an initial loss of soil C followed by depletion of soil C substrates and development of a distinct and active fungal community. Total microbial biomass declines and respiration rates do not keep pace with plant inputs. These patterns suggest that N fertilization could transiently reduce but then increase ecosystem C storage in boreal regions experiencing more frequent fires.

Keywords: Alaska, boreal forest, decomposition, extracellular enzyme, fire, fungi, nitrogen fertilization, soil carbon, soil respiration, succession

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Allison, Steven D.; Gartner, Tracy B.; Mack, Michelle C.; McGuire, Krista; Treseder, Kathleen. 2010. Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biology & Biochemistry. 42: 1157-1164.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.