Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(692 KB)

Title: Rainfall interception of three trees in Oakland, California

Author: Xiao, Qingfu; McPherson, E. Gregory

Date: 2011

Source: Urban Ecosystems. 14(4): 755-769

Publication Series: Journal/Magazine Article (JRNL)

Description: A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8.8 m tall deciduous), and lemon tree (Citrus limon) (2.9 m tall broadleaf evergreen). The lemon, ginkgo, and sweet gum intercepted 27.0%, 25.2% and 14.3% of gross precipitation, respectively. The lemon tree was most effective because it retained its foliage year-round, storing more winter rainfall than the leafless ginkgo and sweet gum trees. Stemflow was more important for the leafless sweet gum. Because of its excurrent growth habit and smooth bark, 4.1% of annual rainfall flowed to the ground as stemflow, compared to less than 2.1% for the lemon and 1.0% for the ginkgo. Water samples were collected from throughfall, stemflow, and a nearby control site to measure concentrations of nutrients and heavy metals. Compared to the control, samples from under trees had higher concentrations of nutrients and metals (e.g., N, P, K, Zn and Cr), indicating that atmospheric deposition to tree crowns was a major source of pollutants. Nutrient and metal concentrations were highest in gingko tree's throughfall. Its rough stem surfaces and dense branching pattern appeared to trap more pollutions than the other two trees.

Keywords: Rainfall interception, Nutrients and metals concentration, Pollutants, distribution, Urban forest, Urban runoff

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Xiao, Qingfu; McPherson, E. Gregory 2011. Rainfall interception of three trees in Oakland, California. Urban Ecosystems. 14(4): 755-769.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.