Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.6 MB)

Title: Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen

Author: Kane, Evan S.; Turetsky, Merritt R.; Harden, Jennifer W.; McGuire, A. David; Waddington, James M.

Date: 2010

Source: Journal of Geophysical Research. 115: G04012

Publication Series: Scientific Journal (JRNL)

Description: Boreal wetland carbon cycling is vulnerable to climate change in part because hydrology and the extent of frozen ground have strong influences on plant and microbial functions. We examined the response of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) across an experimental manipulation of water table position (both raised and lowered water table treatments) in a boreal-rich fen in interior Alaska. DOC and TDN responses to water table manipulation exhibited an interaction with seasonal ice dynamics. We observed consistently higher DOC and TDN concentrations in the lowered water table treatment (71.7 ± 6.5 and 3.0 ± 0.3 mg-L) than in both the control (55.6 ± 5.1 and 2.3 ± 0.2 mg-L) and raised (49.1 ± 4.3 and 1.9 ± 0.1 mg L-1, respectively) water table treatments. Across all plots, pore water DOC concentrations at 20 cm increased as the depth to water table increased (R2 = 0.43, p < 0.001). DOC concentrations also increased as the seasonal thaw depth increased, with solutes increasing most rapidly in the drained plot (R2 = 0.62, p < 0.001). About half of the TDN pool was composed of dissolved organic N (DON). Inorganic N and DON were both highly correlated with changes in DOC, and their respective constraints to mineralization are discussed. These results demonstrate that a declining water table position and dryer conditions affect thaw depth and peat temperatures, and interactions among these ecosystem properties will likely increase DOC and TDN loading and potential for export in these systems.

Keywords: dissolved organic carbon, total dissolved nitrogen, Alaska, climate change, hydrology

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kane, Evan S.; Turetsky, Merritt R.; Harden, Jennifer W.; McGuire, A. David; Waddington, James M. 2010. Seasonal ice and hydrologic controls on dissolved organic carbon and nitrogen concentrations in a boreal-rich fen. Journal of Geophysical Research. 115: G04012 (doi:10.1029/2010JG001366).

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.