Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(978 KB)

Title: Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support

Author: Holden, Zachary A.; Jolly, W. Matt

Date: 2011

Source: Forest Ecology and Management. 262: 2133-2141.

Publication Series: Scientific Journal (JRNL)

Description: Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the 2009 fire season using very high resolution (30 m) surface air temperature, humidity and snow ablation date models developed from a network of inexpensive weather sensors. Snow ablation date occurred as much as 28 days later on Northfacing slopes than on South-facing slopes at upper elevations. South-facing slopes were hotter and drier than North-facing slopes but slope position, in addition to aspect, was also important because nocturnal air temperatures were coolest and humidity was highest in valley bottoms. These factors created heterogeneous fuel moistures and fire danger across the study area. In the late season (August and September), nocturnal cold air drainage and high relative humidity fostered fuel moisture recovery in valley bottoms, where fuel moistures and ERC values were 30% and 45% higher and lower, respectively at peak fire danger (September 29th). Dry fuel moistures and relatively high ERC values persisted on low elevation, Southfacing slopes. The driest conditions were observed 100-200 m above the valley floor where mid-slope thermal belts frequently developed above areas of cold air pooling. We suggest that a complete understanding of these variations may help improve fire management decision making.

Keywords: wildfire danger, climate, weather, topoclimate, snowmelt, microclimate

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Holden, Zachary A.; Jolly, W. Matt. 2011. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. Forest Ecology and Management. 262: 2133-2141.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.