Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.8 MB)

Title: Data-driven design optimization for composite material characterization

Author: Michopoulos, John G.; Hermanson, John C.; Iliopoulos, Athanasios; Lambrakos, Samuel G.; Furukawa, Tomonari

Date: 2011

Source: Journal of computing and information science in engineering. Vol. 11 (June 2011): 11 p.

Publication Series: Scientific Journal (JRNL)

Description: The main goal of the present paper is to demonstrate the value of design optimization beyond its use for structural shape determination in the realm of the constitutive characterization of anisotropic material systems such as polymer matrix composites with or without damage. The approaches discussed are based on the availability of massive experimental data representing the excitation and response behavior of specimens tested by automated mechatronic material testing systems capable of applying multiaxial loading. Material constitutive characterization is achieved by minimizing the difference between experimentally measured and analytically computed system responses as described by surface strain and strain energy density fields. Small and large strain formulations based on additive strain energy density decompositions are introduced and utilized for constructing the necessary objective functions and their subsequent minimization. Numerical examples based on both synthetic (for one-dimensional systems) and actual data (for realistic 3D material systems) demonstrate the successful application of design optimization for constitutive characterization.

Keywords: Mathematical optimization, composite materials, mechanics, forest products industry, mathematical models, research, forest products research, technological innovations, testing machines, design, testing, mechatronics, loads, strains, stresses, performance testing, testing machinery, mechatronic systems, multiaxial testing, design optimization, material characterization, constitutive response, anisotropic materials, polymer matrix composites, multiaxial testing, full-field methods

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Michopoulos, John G.; Hermanson, John C.; Iliopoulos, Athanasios; Lambrakos, Samuel G.; Furukawa, Tomonari; 2011. Data-driven design optimization for composite material characterization. Journal of computing and information science in engineering. Vol. 11 (June 2011): 11 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.