Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(258 KB)

Title: Monitoring adaptive genetic responses to environmental change

Author: Hansen, Michael M.; Olivieri, Isabelle; Waller, Donald M.; Nielsen, Einar E.; Allendorf, F. W.; Schwartz, M. K.; Baker, C. S.; Gregovich, D. P.; Jackson, J. A.; Kendall, K. C.; Laikre, L.; McKelvey, K.; Neel, M. C.; Ryman, N.; Short Bull, R.; Stetz, J. B.; Tallmon, D. A.; Vojta, C. D.; Waples, R. S.

Date: 2012

Source: Molecular Ecology. doi: 10.1111/j.1365-294X.2011.05463.x

Publication Series: Journal/Magazine Article (JRNL)

Description: Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how to use genetic monitoring to study adaptive responses via repeated analysis of the same populations over time, distinguishing between phenotypic and molecular genetics approaches. After describing monitoring designs, we develop explicit criteria for demonstrating adaptive responses, which include testing for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We further review a broader set of 44 studies to assess how well they meet the proposed criteria, and conclude that only 23% fulfill all criteria. Approximately half (43%) of these studies failed to rule out the alternative hypothesis of replacement by a different, better-adapted population. Likewise, 34% of the studies based on phenotypic variation did not test for selection as opposed to drift. These shortcomings can be addressed via improved experimental designs and statistical testing. We foresee monitoring of adaptive responses as a future valuable tool in conservation biology, for identifying populations unable to evolve at sufficiently high rates and for identifying possible donor populations for genetic rescue. Technological advances will further augment the realization of this potential, especially next-generation sequencing technologies that allow for monitoring at the level of whole genomes.

Keywords: contemporary evolution, genetic monitoring, global change, historical DNA samples, population genomics, quantitative trait

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Hansen, Michael M.; Olivieri, Isabelle; Waller, Donald M.; Nielsen, Einar E.; Allendorf, F. W.; Schwartz, M. K.; Baker, C. S.; Gregovich, D. P.; Jackson, J. A.; Kendall, K. C.; Laikre, L.; McKelvey, K.; Neel, M. C.; Ryman, N.; Short Bull, R.; Stetz, J. B.; Tallmon, D. A.; Vojta, C. D.; Waples, R. S. 2012. Monitoring adaptive genetic responses to environmental change. Molecular Ecology. doi: 10.1111/j.1365-294X.2011.05463.x

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.