Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1,004 KB)

Title: Simulating pattern-process relationships to validate landscape genetic models

Author: Shirk, A. J.; Cushman, S. A.; Landguth, E. L.

Date: 2012

Source: International Journal of Ecology. International Journal of Ecology. 2012: Article ID 539109.

Publication Series: Journal/Magazine Article (JRNL)

Description: Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all plausible alternative hypotheses. In this paper, rather than infer the process of gene flow from an observed genetic pattern, we simulate gene flow and determine if the simulated genetic pattern is related to the observed empirical genetic pattern. This is a form of inverse modeling and can be used to independently validate a landscape genetic model. In this study, we used this approach to validate a model of landscape resistance based on elevation, landcover, and roads that was previously related to genetic isolation among mountain goats (Oreamnos americanus) inhabiting the Cascade Range, Washington (USA). The strong relationship between the empirical and simulated patterns of genetic isolation we observed provides independent validation of the resistancemodel and demonstrates the utility of this approach in supporting landscape genetic inferences.

Keywords: landscapes, genetic models

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Shirk, A. J.; Cushman, S. A.; Landguth, E. L. 2012. Simulating pattern-process relationships to validate landscape genetic models. International Journal of Ecology. International Journal of Ecology. 2012: Article ID 539109.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.