Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(673 KB)

Title: Modeling forest stand dynamics from optimal balances of carbon and nitrogen

Author: Valentine, Harry T.; Makela, Annikki.

Date: 2012

Source: New Phytologist. 194: 961-971.

Publication Series: Journal/Magazine Article (JRNL)

Description: We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio of fine-root mass to sapwood cross-sectional area. Constraints on the optimization include pipe-model structure, the C cost of N acquisition, and agreement between the C and N balances. The latter is determined by two models of height growth rate, one derived from the C balance and the other from the N balance; agreement is defined by identical growth rates. Predicted time-courses of maximized height growth rate accord with general observations. Across an N gradient, higher N availability leads to greater N utilization and net primary productivity, larger trees, and greater stocks of leaf and live wood biomass, with declining gains as a result of saturation effects at high N availability. Fine-root biomass is greatest at intermediate N availability. Predicted leaf and fine-root stocks agree with data from coniferous stands across Finland. Optimal C-allocation patterns agree with published observations and model analyses.

Keywords: allocation, biomass, carbon (C), growth model, optimization, pipe model, productivity, stand dynamics

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Valentine, Harry T.; Makela, Annikki. 2012. Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytologist. 194:(4) 961-971.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.