Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.8 MB)

Title: Targeted enrichment strategies for next-generation plant biology

Author: Cronn, Richard; Knaus, Brian J.; Liston, Aaron; Maughan, Peter J.; Parks, Matthew; Syring, John V.; Udall, Joshua.

Date: 2012

Source: American Journal of Botany. 99(2): 291-311

Publication Series: Journal/Magazine Article (JRNL)

Description: The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. In this article, we summarize the many available targeted enrichment strategies that can be used to target partial-to-complete organellar genomes, as well as known and anonymous nuclear targets. These methods fall under four categories: PCR-based enrichment, hybridization-based enrichment, restriction enzyme-based enrichment, and enrichment of expressed gene sequences. Examples of plant-specific applications exist for nearly all methods described. While some methods are well established (e.g., transcriptome sequencing), other promising methods are in their infancy (hybridization enrichment). A direct comparison of methods shows that PCR-based enrichment may be a reasonable strategy for accessing small genomic targets, but that hybridization and transcriptome sequencing scale more efficiently if larger targets are desired. While the benefits of targeted sequencing are greatest in plants with large genomes, nearly all comparative projects can benefit from the improved throughput offered by targeted multiplex DNA sequencing, particularly as the amount of data produced from a single instrument approaches a trillion bases per run.

Keywords: target enrichment, genome reduction, hybridization, genotyping-by-sequencing, microfluidic PCR, multiplex PCR, transcriptome sequencing

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Cronn, Richard; Knaus, Brian J.; Liston, Aaron; Maughan, Peter J.; Parks, Matthew; Syring, John V.; Udall, Joshua. 2012. Targeted enrichment strategies for next-generation plant biology. American Journal of Botany. 99(2): 291-311.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.