Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(2.4 MB)

Title: Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes

Author: Miller, Jerry R.; Lord, Mark L.; Villarroel, Lionel F.; Germanoski, Dru; Chambers, Jeanne C.

Date: 2012

Source: Geomorphology. 139-140: 384-402.

Publication Series: Scientific Journal (JRNL)

Description: The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of these process zones is related to the lithology and weathering characteristics of the underlying bedrock. Process zones dominated by sediment accumulation, storage, and groundwater recharge are associated with less resistant rocks that weather into abundant but relatively small particles. Sediment transport and runoff-dominated zones are associated with resistant, sparsely fractured rocks that produce limited but larger clasts. The type and structure of process zones along axial valleys depend on the characteristics of the process zones on the hillslopes. Numerous sediment storage-dominated reaches leads to a relatively high number of unincised fans located at the mouth of tributaries along the axial valleys and to frequent and lengthy unincised valley segments, both of which disconnect large sections of the drainage basin from channelized flows. In contrast, a relatively high density of transport-dominated process zones leads downstream to the incision of side-valley fans and axial valley deposits as well as a high degree of basin connectivity (defined by the integration of surficial channels). Connectivity also is related to the lithology of the underlying bedrock, with higher degrees of connectivity being associated with volcanic rocks that presumably yield high rates of runoff. Lower levels of connectivity are associated most frequently with extensively fractured, locally permeable sedimentary and metamorphic rock assemblages. Thus, basins underlain by volcanic rocks appear to be more sensitive to incision and produce more dynamic channels in terms of the rate of channel/valley modification than those underlain by other lithologies.

Keywords: fluvial geomorphology, sensitivity, connectivity, groundwater recharge, Great Basin

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Miller, Jerry R.; Lord, Mark L.; Villarroel, Lionel F.; Germanoski, Dru; Chambers, Jeanne C. 2012. Structural organization of process zones in upland watersheds of central Nevada and its influence on basin connectivity, dynamics, and wet meadow complexes. Geomorphology. 139-140: 384-402.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.