Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(589 KB)

Title: Geospatial application of the Water Erosion Prediction Project (WEPP) Model

Author: Flanagan, D. C.; Frankenberger, J. R.; Cochrane, T. A.; Renschler, C. S.; Elliot, W. J.

Date: 2011

Source: ISELE Paper Number 11084. Paper presented at the international symposium on erosion and landscape evolution; September 18-21, 2011; Anchorage, AK. 8 p

Publication Series: Paper (invited, offered, keynote)

Description: The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the model, including subsurface hydrology (percolation, subsurface lateral flow), hillslope erosion (interrill & rill detachment, sediment transport & deposition), channel hydrology/erosion (channel flow routing, detachment, sediment transport, deposition), plant growth, and residue decomposition. At the hillslope profile and/or field scale, simple Windows graphical user interfaces (GUIs) have been developed to easily specify the slope, soil, and management inputs. Likewise, simple watershed configurations of a few hillslopes and channels can be easily created and simulated with this GUI. However, as the catchment size increases, the complexity of developing and organizing all WEPP model inputs greatly increases, due to the multitude of potential variations in topography, soils, and land management practices. For these types of situations, numerical approaches and special user interfaces have been developed to allow for easier WEPP setup, utilizing either publicly-available or user-specific geospatial information (Digital Elevation Models (DEMs), Geographic Information System (GIS) soil layers, GIS land-use layers).

Keywords: Geographic Information Systems, soil erosion, Prediction, WEPP

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Flanagan, D. C.; Frankenberger, J. R.; Cochrane, T. A.; Renschler, C. S.; Elliot, W. J. 2011. Geospatial application of the Water Erosion Prediction Project (WEPP) Model. ISELE Paper Number 11084. Paper presented at the international symposium on erosion and landscape evolution; September 18-21, 2011; Anchorage, AK. 8 p.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.