Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.0 MB)

Title: Pelletizing properties of torrefied spruce

Author: Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.; Sanadi, Anand R.; Ahrenfeldt, Jesper; Shang, Lei; Henriksen, Ulrik B.

Date: 2011

Source: Biomass and Bioenergy, 35 (2011) 4690-4698

Publication Series: Scientific Journal (JRNL)

Description: Torrefaction is a thermo-chemical conversion process improving the handling, storage and combustion properties of wood. To save storage space and transportation costs, it can be compressed into fuel pellets of high physical and energetic density. The resulting pellets are relatively resistant to moisture uptake, microbiological decay and easy to comminute into small particles. The present study focused on the pelletizing properties of spruce torrefied at 250, 275 and 300 °C. The changes in composition were characterized by infrared spectroscopy and chemical analysis. The pelletizing properties were determined using a single pellet press and pellet stability was determined by compression testing. The bonding mechanism in the pellets was studied by fracture surface analysis using scanning electron microscopy. The composition of the wood changed drastically under torrefaction, with hemicelluloses being most sensitive to thermal degradation. The chemical changes had a negative impact, both on the pelletizing process and the pellet properties. Torrefaction resulted in higher friction in the press channel of the pellet press and low compression strength of the pellets. Fracture surface analysis revealed a cohesive failure mechanism due to strong inter-particle bonding in spruce pellets as a resulting from a plastic flow of the amorphous wood polymers, forming solid polymer bridges between adjacent particles. Fracture surfaces of pellets made from torrefied spruce possessed gaps and voids between adjacent particles due to a spring back effect after pelletization. They showed no signs of inter-particle polymer bridges indicating that bonding is likely limited to Van der Waals forces and mechanical fiber interlocking.

Keywords: Torrefaction, Wood, Spruce, Pellet, Bonding mechanism, SEM

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.; Sanadi, Anand R.; Ahrenfeldt, Jesper; Shang, Lei; Henriksen, Ulrik B. 2011. Pelletizing properties of torrefied spruce. Biomass and Bioenergy. 35: 4690-4698. doi:10.1016/j.biombioe.2011.09.025.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.