Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(507 KB)

Title: Quantifying tropical dry forest type and succession: substantial improvement with LiDAR

Author: Martinuzzi, Sebastian; Gould, William A.; Vierling, Lee A.; Hudak, Andrew T.; Nelson, Ross F.; Evans, Jeffrey S.

Date: 2012

Source: Biotropica.

Publication Series: Scientific Journal (JRNL)

Description: Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of forest successional status. We evaluated LiDAR-derived measures of three-dimensional canopy structure and subcanopy topography using classification-tree techniques to separate different dry forest types and successional stages in the Guánica Biosphere Reserve in Puerto Rico. We compared the LiDARbased results with classifications made from commonly used remote sensing data, including Landsat satellite imagery and radar-based topographic data. The accuracy of the LiDAR-based forest type classification (including native- and exotic-dominated forest classes) was substantially higher than those from previously available data (kappa = 0.90 and 0.63, respectively). The best result was obtained when combining LiDAR-derived metrics of canopy structure and topography, and adding Landsat spectral data did not improve the classification. For the second objective, we observed that LiDAR-derived variables of vegetation structure were better predictors of forest successional status (i.e., mid-secondary, late-secondary, and primary forests) than was spectral information from Landsat. Importantly, the key LiDAR predictors identified within each classification-tree model agreed with previous ecological knowledge of these forests. Our study highlights the value of LiDAR remote sensing for assessing tropical dry forests, reinforcing the potential for this novel technology to advance research and management of tropical forests in general.

Keywords: ALS, biodiversity, land-use legacy, secondary forests, vegetation structure

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Martinuzzi, Sebastian; Gould, William A.; Vierling, Lee A.; Hudak, Andrew T.; Nelson, Ross F.; Evans, Jeffrey S. 2012. Quantifying tropical dry forest type and succession: substantial improvement with LiDAR. Biotropica. 10.1111/j.1744-7429.2012.00904.x

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.