Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.9 MB)

Title: Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape

Author: Ager, Alan A.; Vaillant, Nicole M.; Finney, Mark A.; Preisler, Haiganoush K.

Date: 2012

Source: Forest Ecology and Management. 267: 271–283

Publication Series: Scientific Journal (JRNL)

Description: We used simulation modeling to analyze wildfire exposure to social and ecological values on a 0.6 million ha national forest in central Oregon, USA. We simulated 50,000 wildfires that replicated recent fire events in the area and generated detailed maps of burn probability (BP) and fire intensity distributions. We also recorded the ignition locations and size of each simulated fire and used these outputs to construct a fire source–sink ratio as the ratio of fire size to burn probability. Fire behavior was summarized for federal land management designations, including biological conservation reserves, recreational sites, managed forest, and wildland urban interface. Burn probability from the simulations ranged from 0.00001 to 0.026 within the study area (mean = 0.0023), and exhibited substantial variation among and within land designations. Simulated fire behavior was broadly related to gradients in fire regimes, although the combined effects of fuel, topography, and simulated weather resulted in fine scale patterns not reflected in ecological and vegetation data. Average BP for the northern spotted owl (Strix occidentalis caurina) nesting sites ranged from 0.0002 to 0.04. Among the 130 different wildland urban interface areas, average BP varied from 0.0001 to 0.02. Spatial variation in the source–sink ratio was pronounced, and strongly affected by the continuity and arrangement of surface and canopy fuel. We discuss the management implications in terms of prioritizing fuel management activities and designing conservation strategies on fire prone landscapes within the 177 million ha national forest network.

Keywords: wildfire simulation, wildfire risk, conservation biology, national forest planning

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ager, Alan A.; Vaillant, Nicole M.; Finney, Mark A.; Preisler, Haiganoush K. 2012. Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape. Forest Ecology and Management. 267: 271–283.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.