Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(534 KB)

Title: Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas

Author: Ouyang, Ying; Zhang, Jia-En

Date: 2012

Source: Water, Air, & Soil Pollution 223:3181-3193

Publication Series: Journal/Magazine Article (JRNL)

Description: Of all groundwater pollution sources, septic systems are the second largest source of groundwater nitrate contamination in USA. This study investigated shallow groundwater (SGW) nutrient dynamics in septic areas at the northern part of the Lower St. Johns River Basin, Florida, USA. Thirty-five SGW-monitoring wells, located at nine different urban areas served by septic systems, were used to collect the SGW samples seasonally and/or biweekly for a duration of 3 years from 2003 to 2006. Analytical results showed that there were 16 wells with nitrate concentrations exceeding the US Environmental Protection Agency's drinking water limit (10 mg L-1). There also were 11 and 14 wells with total Kjeldahl nitrogen (TKN) and total phosphorus (TP) concentrations, respectively, exceeding the ambient water quality criteria (0.9 mg L-1 for TKN and 0.04 mg L-1 for TP) recommended for rivers and streams in nutrient Ecoregion XII (Southeast USA). In general, site variations are much greater than seasonal variations in SGW nutrient concentrations. A negative correlation existed between nitrate/nitrite–nitrogen (NOx–N) and TKN as well as between NOx–N and ammonium (NH4+), whereas a positive correlation occurred between TKN and NH4+. Furthermore, a positive correlation was found between reduction and oxidation (redox) potential and water level, while no correlation was observed between potassium concentration and redox potential. This study demonstrates a need to investigate the potential adverse impacts of SGW nutrients from the septic areas upon the deeper groundwater quality due to the nutrient penetration and upon the surface water quality due to the nutrient discharge.

Keywords: Nutrient, Septic tank, Shallow groundwater

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ouyang, Ying; Zhang, Jia-En 2012. Quantification of Shallow Groundwater Nutrient Dynamics in Septic Areas. Water, Air, & Soil Pollution 223:3181-3193

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.