Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(140 KB)

Title: Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR

Author: Hudak, Andrew T.; Bright, Ben; Negron, Jose; McGaughey, Robert; Andersen, Hans-Erik; Hicke, Jeffrey A.

Date: 2012

Source: In: SilviLaser 2012: First Return; 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems; Sept. 16-19 September 2012; Vancouver, Canada. Paper Number: ###SL2012-139. Online: http://silvilaser2012.com/wp-content/uploads/2011/11/Silvilaser2012_Full_Proceedings.pdf

Publication Series: Paper (invited, offered, keynote)

Description: Recent bark beetle outbreaks in western North America have been widespread and severe. High tree mortality due to bark beetles affects the fundamental ecosystem processes of primary production and decomposition that largely determine carbon balance (Kurz et al. 2008, Pfeifer et al. 2011, Hicke et al. 2012). Forest managers need accurate data on beetle-induced tree mortality to make better decisions on how best to remediate beetle-affected forests and restore healthy ecosystem services (Negron et al. 2008). Discrete-return LiDAR measures canopy height and density, and LiDAR intensity provides some indication of the spectral reflectance and condition of canopy elements (foliage and branches) (Kim et al. 2009). LiDAR has been successfully applied to estimate biomass and carbon stocks in healthy forest (Hudak et al. 2012) and beetle-affected forest (Bright et al. 2012). A challenge in beetle-affected forests is that most airborne LiDAR has a single near infrared wavelength; i.e., LiDAR lacks the multispectral information useful for distinguishing between green, red, and grey trees. However, LiDAR intensity values may help distinguish between live green and dead red or grey trees. Moreover, mountain pine beetles (the most widespread bark beetle currently) and spruce beetles preferentially attack larger trees, so beetles impart a canopy structural signature that may be exploited (Coops et al. 2009).

Keywords: bark beetle, LiDAR

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to rmrspubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Hudak, Andrew T.; Bright, Ben; Negron, Jose; McGaughey, Robert; Andersen, Hans-Erik; Hicke, Jeffrey A. 2012. Predicting live and dead basal area in bark beetle-affected forests from discrete-return LiDAR. In: SilviLaser 2012: First Return; 12th International Conference on LiDAR Applications for Assessing Forest Ecosystems; Sept. 16-19 September 2012; Vancouver, Canada. Paper Number: ###SL2012-139. Online: http://silvilaser2012.com/wp-content/uploads/2011/11/Silvilaser2012_Full_Proceedings.pdf

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.