Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(0 bytes)

Title: From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees

Author: Howe, Glenn T.; Aitken, Sally N.; Neale, David B.; Jermstad, Kathleen D.; Wheeler, Nicholas C.; Chen, Tony H.H

Date: 2003

Source: Canadian Journal of Botany. 81(12):1247-1266

Publication Series: Journal/Magazine Article (JRNL)

Description: Adaptation to winter cold in temperate and boreal trees involves complex genetic, physiological, and developmental processes. Genecological studies demonstrate the existence of steep genetic clines for cold adaptation traits in relation to environmental (mostly temperature related) gradients. Population differentiation is generally stronger for cold adaptation traits than for other quantitative traits and allozymes. Therefore, these traits appear to be under strong natural selection. Nonetheless, high levels of genetic variation persist within populations. The genetic control of cold adaptation traits ranges from weak to strong, with phenological traits having the highest heritabilities. Within-population genetic correlations among traits range from negligible to moderate. Generally, bud phenology and cold hardiness in the fall are genetically uncorrelated with bud phenology and cold hardiness in the spring. Analyses of quantitative trait loci indicate that cold adaptation traits are mostly controlled by multiple genes with small effects and that quantitative trait loci × environment interactions are common. Given this inherent complexity, we suggest that future research should focus on identifying and developing markers for cold adaptation candidate genes, then using multilocus, multiallelic analytical techniques to uncover the relationships between genotype and phenotype at both the individual and population levels. Ultimately, these methods may be useful for predicting the performance of genotypes in breeding programs and for better understanding the evolutionary ecology of forest trees.

Keywords: association genetics, cold hardiness, dormancy, genecology, bud phenology, quantitative trait loci.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Howe, Glenn T.; Aitken, Sally N.; Neale, David B.; Jermstad, Kathleen D.; Wheeler, Nicholas C.; Chen, Tony H.H. 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany. 81(12):1247-1266.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.