Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.4 MB)

Title: Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

Author: Beets, Peter N.; Reutebuch, Stephen; Kimberley, Mark O.; Oliver, Graeme R.; Pearce, Stephen H.; McGaughey, Robert J.

Date: 2011

Source: Forests. 2: 637-659

Publication Series: Scientific Journal (JRNL)

Description: Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and south-facing aspects. Modelled carbon was highly correlated with directly measured crown, stem, and above ground biomass data, with r = 0.92, 0.97, and 0.98, respectively. LiDAR canopy percentile height (P30) and cover, based on all returns above 0.5 m, explained 81, 88, and 93% of the variation in directly measured crown, stem, and above ground live carbon and 75, 89, and 88% of the modelled carbon, respectively. LAI (all surfaces) ranged between 8.8-19.1 in the 10 plots measured at age 9 years. The difference in canopy percentile heights (P95-P30) and cover based on first returns explained 80% of the variation in total LAI. Periodic mean annual increments in stem volume, above ground live carbon, and total carbon between ages 9 and 13 years were significantly related to (P95-P30), with regression models explaining 56, 58, and 55%, respectively, of the variation in growth rate per plot. When plot aspect and genetic type were included with (P95-P30), the R2 of the regression models for stem volume, above ground live carbon, and total carbon increment increased to 90, 88, and 88%, respectively, which indicates that LiDAR regression equations for estimating stock changes can be substantially improved by incorporating supplementary site and crop data.

Keywords: carbon stock, forest carbon sink, sequestration, Kyoto Protocol, LiDAR, aspect, genetic improvement

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Beets, Peter N.; Reutebuch, Stephen; Kimberley, Mark O.; Oliver, Graeme R.; Pearce, Stephen H.; McGaughey, Robert J. 2011. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR. Forests. 2: 637-659.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.