Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.3 MB)

Title: Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon

Author: d'Oliveira, Marcus V.N.; Reutebuch, Stephen E.; McGaughey, Robert J.; Andersen, Hans-Erik.

Date: 2012

Source: Remote Sensing of Environment. 124: 479-491

Publication Series: Scientific Journal (JRNL)

Description: The objectives of this study were to estimate above ground forest biomass and identify areas disturbed by selective logging in a 1000 ha Brazilian tropical forest in the Antimary State Forest using airborne lidar data. The study area consisted of three management units, two of which were unlogged, while the third unit was selectively logged at a low intensity. A systematic random sample of fifty 0.25-ha ground plots were measured and used to construct lidar-based regression models for above ground biomass (AGB). A lidar model-assisted approach was used to estimate AGB for the logged and unlogged units (using both synthetic and model-assisted estimators). Two lidar explanatory variables, computed at a spatial resolution of 50 m x 50 m, were used in these predictions: 1) the first quartile height of all above ground returns (P25); and, 2) variance of the height above ground of all returns. In a second component of the analysis lidar metrics were also computed at 1 m x 1 m resolution to identify areas impacted by logging activities within the selectively harvested management unit. A high-resolution canopy relative density model (RDM) was used in GIS to identify and delineate roads, skidtrails, landings and harvested tree gaps. The area impacted by selective logging determined from the RDM was 58.4 ha or 15.4% of the total management unit. Using these two spatial resolutions of lidar analyses it was possible to identify differences in AGB in selectively logged areas that had relatively high levels of residual overstory canopy cover. The mean AGB obtained from the synthetic estimator was significantly lower in impacted areas than in undisturbed areas of the selectively logged management unit (p = 0.01 ).

Keywords: forest biomass, airborne laser scanning, selective logging, tropical forest monitoring, lidar, Amazon forest monitoring

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


d'Oliveira, Marcus V.N.; Reutebuch, Stephen E.; McGaughey, Robert J.; Andersen, Hans-Erik. 2012. Estimating forest biomass and identifying low-intensity logging areas using airborne scanning lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sensing of Environment. 124: 479-491.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.