Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(308 KB)

Title: Approaches to incorporating climate change effects in state and transition simulation models of vegetation

Author: Kerns, Becky K.; Hemstrom, Miles A.; Conklin, David; Yospin, Gabriel I.; Johnson, Bart; Bachelet, Dominique; Bridgham, Scott

Date: 2012

Source: In: Kerns, Becky K.; Shlisky, Ayn J.; Daniel, Colin J., tech. eds. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon. Gen. Tech. Rep. PNW-GTR-869. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 161-172.

Publication Series: General Technical Report (GTR)

   Note: This article is part of a larger document. View the larger document

Description: Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes might look and function in the future. Until recently, however, STSMs did not explicitly include climate change considerations. Yet the structure of STSMs makes them highly conducive to the incorporation of any probabilistic phenomenon. The central task in making a STSM climate-sensitive is describing the relevant processes in terms of probabilistic transitions. We discuss four different approaches we have implemented to inform climate-induced changes in vegetation and disturbance probabilities in STSMs using the dynamic global vegetation model MC1. These approaches are based on our work in several landscapes in the western United States using different modeling frameworks. Developing STSMs that consider future climate change will greatly broaden their utility, allowing managers and others to explore the roles of various processes and agents of change in landscape-level vegetation dynamics. However, numerous caveats exist. Regardless of how STSMs are made climate-sensitive, they neither simulate plant physiological responses directly nor predict landscape states by simulating landscape processes mechanistically. They are empirical models that reflect the current understanding of system properties and processes, help organize state-of-the-art knowledge and information, and serve as tools for quickly assessing the potential ramifications of management strategies. As such, they highlight the need for new research, while providing projections based on the best available information.

Keywords: climate change, coupled models, dynamic global vegetation models, state-and-transition simulation model, vegetation dynamics.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pnw_pnwpubs@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Kerns, Becky K.; Hemstrom, Miles A.; Conklin, David; Yospin, Gabriel I.; Johnson, Bart; Bachelet, Dominique; Bridgham, Scott. 2012. Approaches to incorporating climate change effects in state and transition simulation models of vegetation. In: Kerns, Becky K.; Shlisky, Ayn J.; Daniel, Colin J., tech. eds. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, June 14–16, 2011, Portland, Oregon. Gen. Tech. Rep. PNW-GTR-869. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: 161-172.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.