Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.5 MB)

Title: Spring temperature responses of oaks are synchronous with North Atlantic conditions during the last deglaciation

Author: Voelker, Steven L.; Noirot-Cosson, Paul-Emile; Stambaugh, Michael C.; McMurry, Erin R.; Meinzer, Frederick C.; Lachenburch, Barbara; Guyette, Richard P.

Date: 2012

Source: Ecological Monographs. 82(2): 169-187

Publication Series: Scientific Journal (JRNL)

Description: Paleoclimate proxies based on the measurement of xylem cell anatomy have rarely been developed across the temperature range of a species or applied to wood predating the most recent millennium. Here we describe wood anatomy-based proxies for spring temperatures in central North America from modern bur oaks (Quercus macrocarpa Michx.). The strong coherence of temperature signals across the species range supports the use of these proxies across thousands of years of climatic change. We also used 79 subfossil oak log cross sections from northern Missouri, 14C-dated to 9.9-13.63 ka (ka is 1000 cal yr BP), to assess the frequency of oak deposition into alluvial sediments and a subset of these oaks for a wood anatomy-based reconstruction of spring paleotemperatures. Temperatures during the Younger Dryas cold period (YD) were up to 3.5°C lower than modern temperatures for that region, equivalent to or lower than those experienced at the northern edge of the modern species range. Compared to extant oaks growing at much higher [CO2], subfossil oaks had greater vessel frequencies. Besides very low theoretical (or estimated) xylem conductivity near the beginning of the oak record near 13.6 ka, vessel frequencies greater than modern trees compensated for reduced vessel dimensions so that theoretical xylem conductivity was consistently above that of modern trees at the cold northern sites. Oak deposition into alluvial sediments during the YD was significantly lower than expected given the average sample depth of oaks from 9.9 to 13.6 ka. Reduced oak deposition during the YD suggests that an abrupt shift in climate reduced oak populations across the region and/or changed the rates of channel movement across drainages.

Keywords: Great Plains, USA, bur oak, Holocene, phenology, Pleistocene, Pre-Boreal, Quercus macrocarpa, radiocarbon, wood anatomy, xylem, Younger Dryas

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Voelker, Steven L.; Noirot-Cosson, Paul-Emile; Stambaugh, Michael C.; McMurry, Erin R.; Meinzer, Frederick C.; Lachenburch, Barbara; Guyette, Richard P. 2012. Spring temperature responses of oaks are synchronous with North Atlantic conditions during the last deglaciation. Ecological Monographs. 82(2): 169-187.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.