Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(568 KB)

Title: Modeling forest mortality caused by drought stress: implications for climate change

Author: Gustafson, Eric J; Sturtevant, Brian R.

Date: 2013

Source: Ecosystems. 16: 60-74.

Publication Series: Journal/Magazine Article (JRNL)

Description: Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for four drought sensitivity species groups using a weight-of-evidence approach. For all groups, the model that predicted mortality as a function of mean drought length had the greatest plausibility. Model tests confirmed that the models for all groups except the most drought tolerant had predictive value. We assumed that no relationship exists between drought and mortality for the drought-tolerant group. We used these empirical models to develop a drought extension for the forest landscape disturbance and succession model LANDIS-II, and applied the model in Oconto county, Wisconsin (USA) to assess the influence of drought on forest dynamics relative to other factors such as stand-replacing disturbance and site characteristics. The simulations showed that drought stress does affect species composition and total biomass, but effects on age classes, spatial pattern, and productivity were insignificant. We conclude that (for the upper Midwest) (1) a drought-induced tree mortality signal can be detected using FIA data, (2) tree species respond primarily to the length of drought events rather than their severity, (3) the differences in drought tolerance of tree species can be quantified, (4) future increases in drought can potentially change forest composition, and (5) drought is a potentially important factor to include in forest dynamics simulations because it affects forest composition and carbon storage.

Keywords: drought stress, climate change, tree mortality, forest landscape disturbance and succession model, LANDIS-II, forest biomass

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Gustafson, Eric J; Sturtevant, Brian R. 2013. Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems. 16: 60-74.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.