Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(600 KB)

Title: Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction

Author: Kreye, Jesse K.; Varner, J.Morgan; Knapp, Eric E.

Date: 2012

Source: International Journal of Wildland Fire. 21: 894-904

Publication Series: Journal/Magazine Article (JRNL)

Description: Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we measured particle and fuelbed drying rates of masticated Arctostaphylos manzanita and Ceanothus velutinus shrubs, common targets of mastication in fire-prone western USA ecosystems. Drying rates of intact and fractured particles did not differ when desorbing at the fuelbed surface, but these particles did dry more rapidly than underlying fuelbeds. Average response times of 10-h woody particles at the fuelbed surfaces ranged from 16 to 21 h, whereas response times of fuelbeds (composed of 1-h and 10-h particles) were 40 to 69 h. Response times did not differ between fuelbeds composed of fractured woody particles and fuelbeds composed of intact particles (P¼0.258). Particle fracturing as a result of mastication does not affect the drying rate, but the longer-than-expected response times of particles within fuelbeds underscores the needs to better understand fuel moisture dynamics in these increasingly common fuels.

Keywords: Arctostaphylos, Ceanothus, fuels and fuel treatments, mechanical fuel treatment, moisture dynamics, timelag

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Kreye, Jesse K.; Varner, J.Morgan; Knapp, Eric E. 2012. Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction. International Journal of Wildland Fire. 21: 894-904

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.