Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(370 KB)

Title: Ecosystem resilience despite large-scale altered hydroclimatic conditions

Author: Campos, Guillermo E. Ponce; Moran, M. Susan; Huete, Alfredo; Zhang, Yongguang; Bresloff, Cynthia; Huxman, Travis E.; Eamus, Derek; Bosch, David D.; Buda, Anthony R.; Gunter, Stacey A.; Scalley, Tamara Heartsill; Kitchen, Stanley G.; McClaran, Mitchel P.; McNab, W. Henry; Montoya, Diane S.; Morgan, Jack A.; Peters, Debra P. C.; Sadler, E. John; Seyfried, Mark S.; Starks, Patrick J.

Date: 2013

Source: Nature. 494: 349-353.

Publication Series: Journal/Magazine Article (JRNL)

Description: Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Largescale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUEe: above-ground net primary production/evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUEe in drier years that increased significantly with drought to a maximum WUEe across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUEe may allow us to predict land-surface consequences as large regions become more arid, starting with waterlimited, low-productivity grasslands.

Keywords: climate change, ecosystem resilience

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Ponce-Campos, Guillermo E; Moran, M. Susan; Huete, Alfredo; Zhang, Yongguang; Bresloff, Cynthia; Huxman, Travis E.; Eamus, Derek; Bosch, David D.; Buda, Anthony R.; Gunter, Stacey A.; Scalley, Tamara Heartsill; Kitchen, Stanley G.; McClaran, Mitchel P.; McNab, W. Henry; Montoya, Diane S.; Morgan, Jack A.; Peters, Debra P. C.; Sadler, E. John; Seyfried, Mark S.; Starks, Patrick J. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature. 494: 349-353.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.