Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(6.9 MB)

Title: The influence of multi-season imagery on models of canopy cover: A case study

Author: Coulston, John W.; Jacobs, Dennis M.; King, Chris R.; Elmore, Ivey C.

Date: 2013

Source: Photogrammetric Engineering & Remote Sensing 79(5):469–477

Publication Series: Scientific Journal (JRNL)

Description: Quantifying tree canopy cover in a spatially explicit fashion is important for broad-scale monitoring of ecosystems and for management of natural resources. Researchers have developed empirical models of tree canopy cover to produce geospatial products. For subpixel models, percent tree canopy cover estimates (derived from fine-scale imagery) serve as the response variable. The explanatory variables are developed from reflectance values and derivatives, elevation and derivatives, and other ancillary data. However, there is a lack of guidance in the literature regarding the use of leaf-on only imagery versus multi-season imagery for the explanatory variables. We compared models developed from leaf-on only Landsat imagery with models developed from multi-season imagery for a study area in Georgia. There was no statistical difference among models. We suggest that leaf-on imagery is adequate for the development of empirical models of percent tree canopy cover in the Piedmont of the Southeastern United States.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Coulston, John W.; Jacobs, Dennis M.; King, Chris R.; Elmore, Ivey C. 2013. The influence of multi-season imagery on models of canopy cover: A case study. Photogrammetric Engineering & Remote Sensing 79(5):469–477.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.