Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(64 KB)

Title: Microbial response to high severity wildfire in the southwest United States

Author: Overby, Steven T.; Hart, Stephen C.; Newman, Gregory S.; Erickson, Dana

Date: 2006

Source: Forest Ecology and Management. 234S: S198.

Publication Series: Scientific Journal (JRNL)

Description: Southwest United States ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystems have received great attention due to fuel conditions that increase the likelihood of large-scale wildfires with severe fire behavior. The fire season of 2002 demonstrated these extreme fuel load conditions with the largest fires in southwest history. The Jemez District of the Santa Fe National Forest, New Mexico experienced a wildfire (Lake Fire Complex 08/26/02 to 09/01/02)) that consumed one complete replicate block that was part of the nationwide Fire/ Fire Surrogate (FFS) project. This event provided a unique opportunity to investigate wildfire effects on soil, and associated microbial populations. Pre-treatment sampling completed prior to the wildfire allowed resampling of the exact sites to investigate immediate post-fire effects. Soil microbial functional diversity and biomass were determined from the top 5 cm of mineral soil. Virgin Mesa and Tusa Tank FFS control and burn only blocks were used as controls since they had not been treated. We predicted that due to the direct impact of heating, that the high severity wildfire would reduce the size of the microbial biomass and possibly favor bacteria over fungi because of the apparent greater sensitivity of fungi to heat. We also expected that wildfire would not only alter the quantity of available C, but it would also change the quality of C remaining in the soil, and these two factors would alter the physiological capacity of the microbial community. Community level physiological profiles (Biolog), and laboratory estimates of C and N transformations suggest that there was a large change in the function of the soil microflora following a high-severity burn. Phospholipid fatty acid (PLFA) analysis of the microbial population shows significant decrease in the fungal and bacterial populations in the 0-5 cm layer of soil immediately following the fire. Wildfire resulted in a reduction in the size of the microbial biomass and a change in its functional and structural composition.

Keywords: microbial community structure, PLFA (phospholipid fatty acid), CLPP (community-level physiologic profile)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Overby, Steven T.; Hart, Stephen C.; Newman, Gregory S.; Erickson, Dana. 2006. Microbial response to high severity wildfire in the southwest United States. Forest Ecology and Management. 234S: S198.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.