Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(328 KB)

Title: Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and a possible metric

Author: Massman, W. J.

Date: 2004

Source: Atmospheric Environment. 38: 2323-2337.

Publication Series: Scientific Journal (JRNL)

Description: Present air quality standards to protect vegetation from ozone are based on measured concentrations (i.e., exposure) rather than on plant uptake rates (or dose). Some familiar cumulative exposure-based indices include SUM06, AOT40, and W126. However, plant injury is more closely related to dose, or more appropriately to effective dose, than to exposure. This study develops and applies a simple model for estimating effective ozone dose that combines the plant canopy's rate of stomatal ozone uptake with the plant's defense to ozone uptake. Here the plant defense is explicitly parameterized as a function of gross photosynthesis and the model is applied using eddy covariance (ozone and CO2) flux data obtained at a vineyard site in the San Joaquin Valley during the California Ozone Deposition Experiment (CODE91). With the ultimate intention of applying these concepts using prognostic models and remotely sensed data, the pathways for ozone deposition are parameterized (as much as possible) in terms of canopy LAI and the surface friction velocity. Results indicate that (1) the daily maximum potential for plant injury (based on effective dose) tends to coincide with the daily peak in ozone mixing ratio (ppbV), (2) potentially there are some significant differences between ozone metrics based on dose (no plant defense) and effective dose, and (3) nocturnal conductance can contribute significantly to the potential for plant ozone injury.

Keywords: air quality standards, effective dose, dry deposition resistances, ozone

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Massman, W. J. 2004. Toward an ozone standard to protect vegetation based on effective dose: A review of deposition resistances and a possible metric. Atmospheric Environment. 38: 2323-2337.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.