Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(317 KB bytes)

Title: Predicting Southern Appalachian overstory vegetation with digital terrain data

Author: Bolstad, Paul V.; Swank, Wayne; Vose, James

Date: 1998

Source: Landscape Ecology. 13: 271-283.

Publication Series: Miscellaneous Publication

Description: Vegetation in mountainous regions responds to small-scale variation in terrain, largely due to effects on both temperature and soil moisture. However, there are few studies of quantitative, terrain-based methods for predicting vegetation composition. This study investigated relationships between forest composition, elevation, and a derived index of terrain shape, and evaluates methods for predicting forest composition. Trees were measured on 406 permanent plots within the boundaries of the Coweeta Hydrologic Lab, located in the Southern Appalachian mountains of western North Carolina, USA. All plots were in control watersheds, without human or major natural disturbance since 1923. Plots were 0.08 ha and arrayed on transects, with approximately 380 m between parallel transects. Breast-height diameters were measured on all trees. Elevation and terrain shape (cove, ridge, sideslope) were estimated for each plot. Density (trees/ha) and basal area were summarized by species and by forest type (cove, xeric oak-pine, northern hardwoods, and mixed deciduous). Plot data were combined with a digital elevation data (DEM), and a derived index of terrain shape at two sampling resolutions: 30 m (US Geological Survey), and 80 m (Defense Mapping Agency) sources. Vegetation maps were produced using each of four different methods: 1) linear regression with and without log transformations against elevation and terrain variables, combined with cartographic overlay; 2) kriging; 3) co-kriging; and 4) a mosaic diagram. Predicted vegetation was compared to known vegetation at each of 77 independent, withheld data points, and an error matrix was determined for each mapping method.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Bolstad, Paul V.; Swank, Wayne; Vose, James 1998. Predicting Southern Appalachian overstory vegetation with digital terrain data. Landscape Ecology. 13: 271-283.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.