Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(3.1 MB)

Title: Forests and water

Author: Lockaby, Graeme; Nagy, Chelsea; Vose, James M.; Ford, Chelcy R.; Sun, Ge; McNulty, Steve; Caldwell, Pete; Cohen, Erika; Moore Myers, Jennifer

Date: 2013

Source: In: Wear, David N.; Greis, John G., eds. 2013. The Southern Forest Futures Project: technical report. Gen. Tech. Rep. SRS-GTR-178. Asheville, NC: USDA-Forest Service, Southern Research Station. 309-339.

Publication Series: Paper (invited, offered, keynote)

   Note: This article is part of a larger document. View the larger document

Description: Key Findings

  • Forest conversion to agriculture or urban use consistently causes increased discharge, peak flow, and velocity of streams. Subregional differences in hydrologic responses to urbanization are substantial.
  • Sediment, water chemistry indices, pathogens, and other substances often become more concentrated after forest conversion. If the conversion is to an urban use, the resulting additional increases in discharge and concentrations will produce even higher loads.
  • Although physiographic characteristics such as slope and soil texture play key roles in hydrologic and sediment responses to land use conversion, land use (rather than physiography) is the primary driver of water chemistry responses.
  • Conversion of forest land to urban uses may decrease the supply of water available for human consumption and increase potential threats to human health.
  • Increases in urbanization by 2060 in the Appalachians, Piedmont, and Coastal Plain will increase imperviousness and further reduce hydrologic stability and water quality indices in the headwaters of several major river basins and in small watersheds along the Atlantic Ocean and Gulf of Mexico.
  • On average, water supply model projections indicate that water stress due to the combined effects of population and land use change will increase in the South by 10 percent by 2050.
  • Water stress will likely increase significantly by 2050 under all four climate change scenarios, largely because higher temperatures will result in more water loss by evapotranspiration and because of decreased precipitation in some areas.
  • Approximately 5,000 miles of southern coastline are highly vulnerable to sea level rise.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Lockaby, Graeme; Nagy, Chelsea; Vose, James M.; Ford, Chelcy R.; Sun, Ge; McNulty, Steve; Caldwell, Pete; Cohen, Erika; Moore Myers, Jennifer 2013. Forests and water. In: Wear, David N.; Greis, John G., eds. 2013. The Southern Forest Futures Project: technical report. Gen. Tech. Rep. SRS-GTR-178. Asheville, NC: USDA-Forest Service, Southern Research Station. 309-339.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.