Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(3.1 MB)

Title: Application of LiDAR data for hydrologic assessments of low-gradient coastal watershed drainage characteristics

Author: Amatya, Devendra; Trettin, Carl; Panda, Sudhanshu; Ssegane, Herbert.

Date: 2013

Source: Journal of Geographic Information System. 5(2): 175-191

Publication Series: Scientific Journal (JRNL)

Description: Documenting the recovery of hydrologic functions following perturbations of a landscape/watershed is important to address issues associated with land use change and ecosystem restoration. High resolution LiDAR data for the USDA Forest Service Santee Experimental Forest in coastal South Carolina,USA was used to delineate the remnant historical water management structures within the watersheds supporting bottomland hardwood forests that are typical of the region. Hydrologic functions were altered during the early1700’s agricultural use period for rice cultivation, with changes to detention storage, impoundments, and runoff routing. Since late1800’s, the land was left to revert to forests, without direct intervention. The resultant bottomlands, while typical in terms of vegetative structure and composition, still have altered hydrologic pathways and functions due to the historical land use. Furthermore, an accurate estimate of the watershed drainage area (DA) contributing to stream flow is critical for reliable estimates of peak flow rate, runoff depth and coefficient, as well as water and chemical balance. Peak flow rate, a parameter widely used in design of channels and cross drainage structures, is calculated as a function of the DA and other parameters. However, in contrast with the upland watersheds, currently available topographic maps and digital elevation models (DEMs) used to estimate the DA are not adequate for flat, low-gradient Coastal Plain (LCP) landscape. In this paper we explore a case study of a 3rd order watershed (equivalent to 14-digit hydrologic unit code (HUC)) at headwaters of east branch of Cooper River draining to Charleston Harbor, SC to assess the drainage area and corresponding mean annual runoff coefficient based on various DEMs including LiDAR data. These analyses demonstrate a need for application of LiDAR-based DEMs together with field verification to improve the basis for assessments of hydrology, watershed drainage characteristics, and modeling in the LCP.

Keywords: Santee Experimental Forest, Digital Elevation Models (DEM), Drainage Area, Drainage Network, Low-Gradient Coastal Plain (LCP)

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Amatya, Devendra; Trettin, Carl; Panda, Sudhanshu; Ssegane, Herbert. 2013. Application of LiDAR data for hydrologic assessments of low-gradient coastal watershed drainage characteristics. Journal of Geographic Information System. 5(2): 175-191. doi: 10.4236/jgis.2013.52017.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.