Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(850 KB)

Title: Exploiting autoregressive properties to develop prospective urban arson forecasts by target

Author: Prestemon, Jeffrey P.; Butry, David T.; Thomas, Douglas

Date: 2013

Source: Applied Geography 44:143-153

Publication Series: Scientific Journal (JRNL)

Description: Municipal fire departments responded to approximately 53,000 intentionally-set fires annually from 2003 to 2007, according to National Fire Protection Association figures. A disproportionate amount of these fires occur in spatio-temporal clusters, making them predictable and, perhaps, preventable. The objective of this research is to evaluate how the aggregation of data across space and target types (residential, non-residential, vehicle, outdoor and other) affects daily arson forecast accuracy for several target types of arson, and the ability to leverage information quantifying the autoregressive nature of intentional firesetting. To do this, we estimate, for the city of Detroit, Michigan, competing statistical models that differ in their ability to recognize potential temporal autoregressivity in the daily count of arson fires. Spatial units vary from Census tracts, police precincts, to citywide.We find that (1) the out-of-sample performance of prospective hotspot models for arson cannot usefully exploit the autoregressive properties of arson at fine spatial scales, even though autoregression is significant in-sample, hinting at a possible bias-variance tradeoff; (2) aggregation of arson across reported targets can yield a model that differs from by-target models; (3) spatial aggregation of data tends to increase forecast accuracy of arson due partly to the ability to account for temporally dynamic firesetting; and (4) arson forecast models that recognize temporal autoregression can be used to forecast daily arson fire activity at the Citywide scale in Detroit. These results suggest a tradeoff between the collection of high resolution spatial data and the use of more sophisticated modeling techniques that explicitly account for temporal correlation.

Keywords: green crime, crime clusters, incendiarism, count models, structures, vehicles, outdoor fires

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Prestemon, Jeffrey P.; Butry, David T.; Thomas, Douglas S. 2013. Exploiting autoregressive properties to develop prospective urban arson forecasts by target. Applied Geography 44:143-153.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.