Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(5.0 MB)

Title: Reevaluating the self-thinning boundary line for ponderosa pine (Pinus ponderosa) forests

Author: Zhang, Jianwei; Oliver, William W.; Powers, Robert F.

Date: 2013

Source: Can. J. For. Res. 43: 963-971

Publication Series: Journal/Magazine Article (JRNL)

Description: The self-thinning rule has been used extensively to predict population dynamics under intraspecific and interspecific competition. In forestry, it is an important silvicultural concept for maintaining stand health in the face of climate change and biotic stress, but uncertainty exists because traditional self-thinning limits were set subjectively without regard to site quality. We addressed this by analyzing ponderosa pine (Pinus ponderosa Lawson & C. Lawson) data from 109 research plots measured repeatedly and 59 inventory plots measured once across California. Self-thinning boundaries were fitted to the data with quantile regression and stochastic frontier function (SFF) techniques with and without site index (SI) as a covariate. The models from both methods fitted the data well with either research plots or all plots. Slopes for size-density trajectories were -0.45 with the 0.99 quantile and -0.47 for SFF. Maximum stand density indices (SDI) were 1250 trees per hectare (TPH) with the 0.99 quantile and 1050-1060 TPH with SFF. Mortality occurred when site occupancy from SFF reached 0.75, suggesting a zone of imminent mortality. Curvilinear trends in maximum SDI across SI for both methods indicate that self-thinning varies with site quality. Any management regimes that increase site quality and productivity will increase the self-thinning boundary.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Zhang, Jianwei; Oliver, William W.; Powers, Robert F. 2013. Reevaluating the self-thinning boundary line for ponderosa pine (Pinus ponderosa) forests. Can. J. For. Res. 43: 963-971.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.