Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(542 KB)

Title: Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts

Author: Kiefer, M. T.; Zhong, S.; Heilman, W. E.; Charney, J. J.; Bian, X.

Date: 2013

Source: Journal of Geophysical Research: Atmospheres. 118(12): 6175-6188.

Publication Series: Scientific Journal (JRNL)

Description: Efforts to develop a canopy flow modeling system based on the Advanced Regional Prediction System (ARPS) model are discussed. The standard version of ARPS is modified to account for the effect of drag forces on mean and turbulent flow through a vegetation canopy, via production and sink terms in the momentum and subgrid-scale turbulent kinetic energy (TKE) equations. Additionally, a downward decaying net radiation profile inside the canopy is used to account for the attenuation of net radiation by vegetation elements. As a critical step in the model development process, simulations performed with the new canopy model, termed ARPS-CANOPY, are examined and compared to observations from the Canopy Horizontal Array Turbulence Study (CHATS) experiment. Comparisons of mean and turbulent flow properties in a statistically homogeneous atmosphere are presented for two cases, one when the trees are dormant without leaves and another when the trees are full of mature leaves. The model is shown to reproduce the shape of the vertical profiles of mean wind, temperature, and TKE observed during the CHATS experiment, with errors generally smaller in the afternoon and in the case with stronger mean flow. Sensitivity experiments with relatively coarse (90 m) horizontal grid spacing retain the overall mean profile shapes and diurnal trends seen in the finer-resolution simulations. The work described herein is part of a larger effort to develop predictive tools for close-range (on the order of 1 km from the source) smoke dispersion from low-intensity fires within forested areas.

Keywords: vegetation canopy, atmospheric model, model evaluation, CHATS, smoke prediction

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • This publication may be available in hard copy. Check the Northern Research Station web site to request a printed copy of this publication.
  • Our on-line publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact Sharon Hobrla, shobrla@fs.fed.us if you notice any errors which make this publication unusable.

XML: View XML

Citation:


Kiefer, M. T.; Zhong, S.; Heilman, W. E.; Charney, J. J.; Bian, X. 2013. Evaluation of an ARPS-based canopy flow modeling system for use in future operational smoke prediction efforts. Journal of Geophysical Research: Atmospheres. 118(12): 6175-6188.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.