Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(1.3 MB)

Title: Effect of inventory method on niche models: random versus systematic error

Author: Lintz, Heather E.; Gray, Andrew N.; McCune, Bruce

Date: 2013

Source: Ecological Informatics. 18: 20-34

Publication Series: Scientific Journal (JRNL)

Description: Data from large-scale biological inventories are essential for understanding and managing Earth's ecosystems. The Forest Inventory and Analysis Program (FIA) of the U.S. Forest Service is the largest biological inventory in North America; however, the FIA inventory recently changed from an amalgam of different approaches to a nationally-standardized approach in 2000. Full use of both data sets is clearly warranted to target many pressing research questions including those related to climate change and forest resources. However, full use requires lumping FIA data from different regionally-based designs (pre-2000) and/or lumping the data across the temporal changeover. Combining data from different inventory types must be approached with caution as inventory types represent different probabilities of detecting trees per sample unit, which can ultimately confound temporal and spatial patterns found in the data. Consequently, the main goal of this study is to evaluate the effect of inventory on a common analysis in ecology, modeling of climatic niches (or species-climate relations). We use non-parametric multiplicative regression (NPMR) to build and compare niche models for 41 tree species from the old and new FIA design in the Pacific coastal United States. We discover two likely effects of inventory on niche models and their predictions. First, there is an increase from 4 to 6% in random error for modeled predictions from the different inventories when compared to modeled predictions from two samples of the same inventory. Second, systematic error (or directional disagreement among modeled predictions) is detectable for 4 out of 41 species among the different inventories: Calocedrus decurrens, Pseudotsuga menziesii, Pinus ponderosa, and Abies concolor. Hence, at least 90% of niche models and predictions of probability of occurrence demonstrate no obvious effect from the change in inventory design. Further, niche models built from sub-samples of the same data set can yield systematic error that rivals systematic error in predictions for models built from two separate data sets. This work corroborates the pervasive and pressing need to quantify different types of error in niche modeling to address issues associated with data quality and large-scale data integration.

Keywords: niche model, forest inventory, sample design, uncertainty, non-parametric multiplicative regression

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Lintz, Heather E.; Gray, Andrew N.; McCune, Bruce. 2013. Effect of inventory method on niche models: random versus systematic error. Ecological Informatics. 18: 20-34.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.