Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(928 KB)

Title: Linear diffusion-wave channel routing using a discrete Hayami convolution method

Author: Wang, Li; Wu, Joan Q.; Elliot, William J.; Feidler, Fritz R.; Lapin, Sergey.

Date: 2014

Source: Journal of Hydrology. 509: 282-294.

Publication Series: Scientific Journal (JRNL)

Description: The convolution of an input with a response function has been widely used in hydrology as a means to solve various problems analytically. Due to the high computation demand in solving the functions using numerical integration, it is often advantageous to use the discrete convolution instead of the integration of the continuous functions. This approach greatly reduces the amount of the computational work; however, it increases the possibility for mass balance errors. In this study, we analyzed the characteristics of the kernel function for the Hayami convolution solution to the linear diffusion-wave channel routing with distributed lateral inflow. We propose two ways of selection of the discrete kernel function values: using the exact point values or using the center-averaged values. Through a hypothetical example and the applications to Asotin Creek, WA and the Clearwater River, ID, we showed that when the point kernel function values were used in the discrete Hayami convolution (DHC) solution, the mass balance error of channel routing is dependent on the number of time steps on the rising limb of the Hayami kernel function. The mass balance error is negligible when there are more than 1.8 time steps on the rising limb of the kernel function. The fewer time steps on the rising limb, the greater risk of high mass balance errors. When the average kernel function values are used for the DHC solution, however, the mass balance is always maintained, since the integration of the discrete kernel function is always unity.

Keywords: linear diffusion-wave channel routing, discrete Hayami convolution, kernel function values, mass-balance error, temporal resolution, lateral inflow

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Wang, Li; Wu, Joan Q.; Elliot, William J.; Feidler, Fritz R.; Lapin, Sergey. 2014. Linear diffusion-wave channel routing using a discrete Hayami convolution method. Journal of Hydrology. 509: 282-294.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.