Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(334 KB bytes)

Title: Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug. ex Laws.)

Author: Vose, James M.; Elliott, Katherine J.; Johnson, Dale W.; Tingey, David T.; Johnson, Mark G.

Date: 1997

Source: Plant and Soil 190: 19-28, 1997.

Publication Series: Miscellaneous Publication

Description: We measured growing season soil CO2 evolution under elevated atmospheric [CO2 and soil nitrogen (N) additions. Our objectives were to determine treatment effects, quantify seasonal variation, and compare two measurement techniques. Elevated [CO2] treatments were applied in open-top chambers containing ponderosa pine (Pinus ponderosa L.) seedlings. N applications were made annually in early spring. The experimental design was a replicated factorial combination of CO2 (ambient, +175, and +350 µL L-1 CO2) and N (0, 10, and 20 g m-2 N as ammonium sulphate). Soils were irrigated to maintain soil moisture at > 25 percent. Soil CO2 evolution was measured over diurnal periods (20-22 hours) in October 1992, and April, June, and October 1993 and 1994 using a flow-through, infrared gas analyzer measurement system and corresponding pCO2 measurements were made with gas wells. Significantly higher soil CO2 evolution was observed in the elevated CO2 treatments; N effects were not significant. Averaged across all measurement periods, fluxes, were 4.8, 8.0, and 6.5 for ambient + 175 CO2, and +350 CO2 respectively).

Treatment variation was linearly related to fungal occurrence as observed in minirhizotron tubes. Seasonal variation in soil CO2 evolution was non-linearly related to soil temperature; i.e., fluxes increased up to approximately soil temperature (10cm soil depth) and decreased dramatically at temperatures > 18°C. These patterns indicate exceeding optimal temperatures for biological activity. The dynamic, how-through measurement system was weakly correlated (r = 0.57; p < 0.0001; n = 56) with the pCO2 measurement method.

Keywords: dynamic measurement, elevated CO2 effects, open-top chambers, pCO2, soil respiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Vose, James M.; Elliott, Katherine J.; Johnson, Dale W.; Tingey, David T.; Johnson, Mark G. 1997. Soil respiration response to three years of elevated CO2 and N fertilization in ponderosa pine (Pinus ponderosa Doug. ex Laws.). Plant and Soil 190: 19-28, 1997.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.