Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(159 KB bytes)

Title: Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

Author: Maier, Chris A.; Johnsen, Kurt H.; Butnor, John; Kress, Lance W.; Anderson, Peter H.

Date: 2002

Source: Tree Physiology 22, 1093-1106

Publication Series: Miscellaneous Publication

Description: Summary We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 ┬Ámol mol-1 ) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (NM), but had no consistent effect on foliar leaf mass (WA) or light-saturated net photosynthesis (Asat). However, the correlation between Asat and leaf nitrogen per unit area (NA = WANM) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on WA, NM or NA, but increased Asat on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, WA, NA, Asat and Rd decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Maier, Chris A.; Johnsen, Kurt H.; Butnor, John; Kress, Lance W.; Anderson, Peter H. 2002. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization. Tree Physiology 22, 1093-1106

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.