Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(104 KB)

Title: Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density

Author: Bond, B. H.; Kline, D. Earl; Araman, Philip A.

Date: 2002

Source: Wood and Fiber Science. 34(4): 516-528.

Publication Series: Not categorized

Description: Defect color, shape, and density measures aid in the differentiation of knots, bark pockets, stain/mineral streak, and clearwood in red oak, (Quercus rubra). Various color, shape, and density measures were extracted for defects present in color and X-ray images captured using a color line scan camera and an X-ray line scan detector. Analysis of variance was used to determine which color, shape, and density measures differed between defects. Discriminant classifiers were used to test which defect measures best discriminated between different defects in lumber.

The ANOVA method of model measure selection was unable to provide a direct method of selecting the optimum combination of measures; however, it did provide insight as to which measure should be selected in cases of confusion between defects. No single sensor measure provided overall classification accuracy greater than 70%, indicating the need for multisensor and multimeasure information for defect classification. When used alone, color measures resulted in the highest overall defect classification accuracy (between 69 and 70%). Shape and density measures resulted in the lowest overall classification accuracy (between 32 and 53%); however, when used in combination with other measures, they contributed to a 5–10% increase in defect classification accuracy. It was determined that defect classification required multisensor information to obtain the highest accuracy. For classifying defects in red oak, sensor measures should include two color mean values and two standard deviation values, a shape measure, and a X-ray standard deviation value.

Keywords: lumber scanning, defect detection, discriminant analysis, machine vision

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Bond, B. H.; Kline, D. Earl; Araman, Philip A. 2002. Differentiating defects in red oak lumber by discriminant analysis using color, shape, and density. Wood and Fiber Science. 34(4): 516-528.

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.