Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern Research Station
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(4.5 MB bytes)

Title: Upstream-to-downstream changes in nutrient export risk

Author: Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O’Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C.

Date: 2003

Source: Landscape Ecology 18:195-208

Publication Series: Miscellaneous Publication

Description: Abstract: Nutrient export coefficients are estimates of the mass of nitrogen (N) or phosphorus (P) normalized by area and time (e.g., kg/ha/yr). They have been estimated most often for watersheds ranging in size from 102 to 104 hect-ares, and have been recommended as measurements to inform management decisions. At this scale, watersheds are often nested upstream and downstream components of larger drainage basins, suggesting nutrient export co-efficients will change from one subwatershed to the next. Nutrient export can be modeled as risk where lack of monitoring data prevents empirical estimation. We modeled N and P export risk for subwatersheds of larger drainage basins, and examined spatial changes in risk from upstream to downstream watersheds. Spatial (sub-watershed) changes in N and P risk were a function of in-stream decay, subwatershed land-cover composition, and subwatershed streamlength. Risk tended to increase in a downstream direction under low rates of in-stream decay, whereas high rates of in-stream decay often reduced risk to zero (0) toward downstream subwatersheds. On average, increases in the modeled rate of in-stream decay reduced risk by 0.44 for N and 0.39 for P. Interactions between in-stream decay, land-cover composition and streamlength produced dramatic changes in risk across subwatersheds in some cases. Comparison of the null cases of no in-stream decay and homogeneously forested subwatersheds with extant conditions indicated that complete forest cover produced greater reductions in nutrient export risk than a high in-stream decay rate, especially for P. High rates of in-stream decay and complete forest cover produced approximately equivalent reductions in N export risk for downstream subwatersheds.

Keywords: Chesapeake Bay, in-stream nutrient decay, modeling, nitrogen, phosphorus, pollution, watersheds

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
  • You may send email to pubrequest@fs.fed.us to request a hard copy of this publication. (Please specify exactly which publication you are requesting and your mailing address.)

XML: View XML

Citation:


Wickham, James D.; Wade, Timothy G.; Riitters, Kurt H.; O’Neill, R.V.; Smith, Jonathan H.; Smith, Elizabeth R.; Jones, K.B.; Neale, A.C. 2003. Upstream-to-downstream changes in nutrient export risk. Landscape Ecology 18:195-208

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.