Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(335 Kb bytes)

Title: Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position

Author: Tang, Zhenmin; Chambers, Jim L.; Sword Sayer, Mary A.; Barnett, James P.

Date: 2003

Source: Trees (2003)17: 424-430

Publication Series: Not categorized

Description: To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana. Physiological data were collected in the upper and lower canopy positions on 26 sunny days between July 1996 and June 1997 (one-half of the leaf life span). Mean net photosynthesis was highest (4.3 mol m2 s-1) in the spring and closely corresponded with light intensity in the canopy. Photosynthesis in the winter was nearly 3.0 µmol m-2 s-1, indicating that loblolly pine enables substantial carbon fixation all year around in the Gulf Coastal Plain region. Mean transpiration and stomatal conductance were highest in the summer and lowest in the winter. With increased light availability after thinning, needle photosynthesis, transpiration and stomatal conductance rose 84, 40 and 23%, respectively, in the lower canopy of the thinned-treatment trees. Light-saturated photosynthetic capacity of the lower canopy needles was 5.2 µmol m-2 s-1 for the thinned treatment and 4.2 µmol m-2 s-1 for the non-thinned treatment. It is concluded that thinning-induced light penetration through the canopy enhances physiological activities in the lower canopy foliage of residual trees, and that light availability is the only significant variable for predicting needle-level photosynthesis rates.

Keywords: photosynthetic response, Pinus taeda, stomatal conductance, thinning, transpiration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Tang, Zhenmin; Chambers, Jim L.; Sword Sayer, Mary A.; Barnett, James P. 2003. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position. Trees (2003)17: 424-430

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.