Skip to page content
USDA Forest Service
  
Treesearch

Research & Development Treesearch

 
Treesearch Home
About Treesearch
Contact Us
Research & Development
Forest Products Lab
International Institute of Tropical Forestry
Northern
Pacific Northwest
Pacific Southwest
Rocky Mountain
Southern
Help
 

GeoTreesearch


Science.gov - We Participate


USA.gov  Government Made Easy


Global Forest Information Service

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

You are here: Home / Search / Publication Information
Bookmark and Share

Publication Information

(294 KB bytes)

Title: Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature

Author: Johnsen, Kurt H.; Maier, Chris A.; Kress, Lance W.

Date: 2005

Source: Functional Ecology (2005) 19, 81–87

Publication Series: Not categorized

Description:

  1. In order to help assess spatial competition for below-ground resources, we quantified the effects of fertilization on root biomass quantity and lateral root distribution of midrotation Pinus taeda trees. Open-top chambers exposed trees to ambient or ambient plus 200 µmol mol-1 atmospheric CO2 for 31 months.
  2. Tank CO2 was depleted in atmospheric 13C; foliage of elevated CO2 trees had δ13C of - 42·9%, compared with - 29·1% for ambient CO2 trees.
  3. Roots 1 m from the base of elevated CO2-grown trees had more negative δ13C relative to control trees, and this difference was detected, on average, up to 5·8, 3·7 and 3·7 m away from the trees for 0-2, 2-5 and >5 mm root-size classes, respectively. Non-fertilized tree roots extended as far as fertilized trees despite the fact that their above-ground biomass was less than half that of fertilized trees.
  4. These results are informative with respect to root sampling intensity and protocol, and the distances required between experimental manipulations to evaluate belowground processes of independent treatments.
  5. Fine-root turnover has usually been estimated to range from weeks to 3 years, representing a major avenue of carbon flux. Using a mixing model we calculated that 0-2 mm roots had a mean residence time of 4·5 years indicating relatively slow fineroot turnover, a result that has major implications in modelling C cycling.

Keywords: 13C, carbon isotopes, carbon sequestration

Publication Notes:

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

XML: View XML

Citation:


Johnsen, Kurt H.; Maier, Chris A.; Kress, Lance W. 2005. Quantifying root lateral distribution and turnover using pine trees with a distinct stable carbon isotope signature. Functional Ecology (2005) 19, 81–87

 


 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.